Strongly correlated many-body states in electron systems and ultracold atoms
Square-type Fermi Hubbard models: from magnetic polarons to high temperature superconductivity
Recent Publications:
M. L. Prichard, Z. Ba, I. Morera, B. M. Spar, D. A. Huse, E. Demler, W. S. Bakr, Magnon-polarons in the Fermi-Hubbard model, Nature Physics 21:1548 (2025). https://doi.org/10.1038/s41567-025-03004-6
L. Homeier, H. Lange, E. Demler, A. Bohrdt, F. Grusdt, Feshbach hypothesis of high-Tc superconductivity in cuprates, Nature Communications 16:314 (2025). https://doi.org/10.1038/s41467-024-55549-4
H. Lange, L. Homeier, E. Demler, U. Schollwoeck, A. Bohrdt, F. Grusdt, Pairing dome from an emergent Feshbach resonance in a strongly repulsive bilayer model, Phys. Rev. B 110:L081113 (2024). https://doi.org/10.1103/PhysRevB.110.L081113
S. Hirthe, T. Chalopin, D. Bourgund, P. Bojovic, A. Bohrdt, E. Demler, F. Grusdt, I. Bloch, T. Hilker, Magnetically mediated hole pairing in fermionic ladders of ultracold atoms, Nature 613:463 (2023). https://doi.org/10.1038/s41586-022-05437-y
A. Bohrdt, E. Demler, F. Grusdt, Dichotomy of heavy and light pairs of holes in the tJ model, Nature Communications 14:8017 (2023). https://doi.org/10.1038/s41467-023-43453-2
A. Bohrdt, L. Homeier, I. Bloch, E. Demler, F. Grusdt, Strong pairing in mixed dimensional bilayer antiferromagnetic Mott insulators, Nature Physics 18:651 (2022). https://doi.org/10.1038/s41567-022-01592-1
A. Bohrdt, L. Homeier, C. Reinmoser, E. Demler, F. Grusdt, Exploration of doped quantum magnets with ultracold atoms, Annals of Physics 435:168651 (2021). https://doi.org/10.1038/s41567-022-01561-8
A. Bohrdt, E. Demler, F. Grusdt, Rotational Resonances and Regge Trajectories in Lightly Doped Antiferromagnets, Phys. Rev. Lett. 127:197004 (2021). https://doi.org/10.1103/PhysRevLett.127.197004
J. Koepsell, D. Bourgund, P. Sompet, S. Hirthe, A. Bohrdt, Y. Wang, F. Grusdt, E. Demler, G. Salomon, C. Gross, I. Bloch, Microscopic evolution of doped Mott insulators from polaronic metal to Fermi liquid, Science 374:82 (2021). https://doi.org/10.1126/science.abe7165
G. Ji, M. Xu, L. Kendrick, C. Chiu, J. Bruggenjurgen, D. Greif, A. Bohrdt, F. Grusdt, E. Demler, M. Lebrat, M. Greiner, Coupling a Mobile Hole to an Antiferromagnetic Spin Background: Transient Dynamics of a Magnetic Polaron, Phys. Rev. X 11:021022 (2021). https://doi.org/10.1103/PhysRevX.11.021022
A. Bohrdt, E. Demler, F. Pollmann, M. Knap, F. Grusdt, Parton theory of ARPES spectra in antiferromagnetic Mott insulators, Phys. Rev. B 102:035139 (2020). https://doi.org/10.1103/PhysRevB.102.035139
F. Grusdt, A. Bohrdt, E. Demler, Microscopic spinon-chargon theory of magnetic polarons in the t-J model, Phys. Rev. B 99:224422 (2019).
C. Chiu, G. Ji, A. Bohrdt, M. Xu, M. Knap, E. Demler, F. Grusdt, M. Greiner, D. Greif, String patterns in the doped Hubbard model, Science 365:251 (2019).
J. Koepsell, J. Vijayan, P. Sompet, F. Grusdt, T. Hilker, E. Demler, G. Salomon, I. Bloch, C. Gross, Imaging magnetic polarons in the doped Fermi-Hubbard model, Nature 572:358 (2019).
F. Grusdt, M. Kanasz-Nagy, A. Bohrdt, C. Chiu, G. Ji, M. Greiner, D. Greif, E. Demler, Parton theory of magnetic polarons: Mesonic resonances and signatures in dynamics, Phys. Rev. X 8:011046 (2018).
Triangular-type Fermi Hubbard models: ferro- and antiferromagnetic polarons, kinetic magnetism
M. Lebrat, M. Xu, L. H. Kendrick, A. Kale, Y. Gang, P. Seetharaman, I. Morera, E. Khatami, E. Demler, M. Greiner, Observation of Nagaoka Polarons in a Fermi-Hubbard Quantum Simulator, Nature 629:317 (2024). https://doi.org/10.1038/s41586-024-07272-9
M. L. Prichard, B. M. Spar, I. Morera, E. Demler, Z. Z. Yan, W. S. Bakr, Directly imaging spin polarons in a kinetically frustrated Hubbard system, Nature 629:323 (2024). https://doi.org/10.1038/s41586-024-07356-6
I. Morera, C. Weitenberg, K. Sengstock, E. Demler, Exploring kinetically induced bound states in triangular lattices with ultracold atoms: spectroscopic approach, SciPost Phys. 16:081 (2024). https://doi.org/10.21468/SciPostPhys.16.3.081
Liquid to Wigner crystal transition of electrons in 2D systems
J. Sung, J. Wang, I. Esterlis, P. A. Volkov, G. Scuri, Y. Zhou, E. Brutschea, T. Taniguchi, K. Watanabe, Y. Yang, M. A. Morales, S. Zhang, A. J. Millis, M. D. Lukin, P. Kim, E. Demler, H. Park, An electronic microemulsion phase emerging from a quantum crystal-to-liquid transition, Nature Physics (2025). https://doi.org/10.1038/s41567-024-02759-8
T. Smolenski, P. E. Dolgirev, C. Kuhlenkamp, A. Popert, Y. Shimazaki, P. Back, M. Kroner, K. Watanabe, T. Taniguchi, I. Esterlis, E. Demler, A. Imamoglu, Observation of Wigner crystal of electrons in a monolayer semiconductor, Nature 595:53 (2021). https://doi.org/10.1038/s41586-021-03590-4
Y. Zhou, J. Sung, E. Brutschea, I. Esterlis, Y. Wang, G. Scuri, R. Gelly, H. Heo, T. Taniguchi, K. Watanabe, G. Zarand, M. Lukin, P. Kim, E. Demler, H. Park, Signatures of bilayer Wigner crystals in a transition metal dichalcogenide heterostructure, Nature 595:48 (2021). https://doi.org/10.1038/s41586-021-03560-w
Electron-phonon systems
Recent Publications:
I. Esin, I. Esterlis, E. Demler, G. Refael, Generating coherent phonon waves in narrow-band materials: a twisted bilayer graphene phaser, Phys. Rev. Lett. 130:147001 (2023). https://doi.org/10.1103/PhysRevLett.130.147001
Y. Wang, I. Esterlis, T. Shi, J. I. Cirac, E. Demler, Zero-Temperature Phases of the 2D Hubbard-Holstein Model: A Non-Gaussian Exact Diagonalization Study, Phys. Rev. Research 2:043258 (2020). https://doi.org/10.1103/PhysRevResearch.2.043258
T. Andersen, B. Dwyer, J. Sanchez-Yamagishi, J. Rodriguez-Nieva, K. Agarwal, K. Watanabe, T. Taniguchi, E. Demler, P. Kim, H. Park, M. Lukin, Electron-phonon instability in graphene revealed by global and local noise probes, Science 364:154 (2019). https://doi.org/10.1126/science.aaw2104